Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Transient Temperature Field Prediction of PMSM Based on Electromagnetic-Heat-Flow Multi-Physics Coupling and Data-Driven Fusion Modeling

2023-10-30
2023-01-7031
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test.
Technical Paper

Understanding the Transient Behavior and Consistency Evolution of PEMFC from the Perspective of Temperature

2022-03-29
2022-01-0189
The temperature of proton exchange membrane fuel cell (PEMFC) is the key factor restricting fuel cell’s performance. A deep understanding of temperature on stack voltage consistency and transient characteristics is necessary for improving the output performance of fuel cell. In this paper, the variation trend of consistency and transient characteristics of 20kW PEMFC stack at different temperatures is studied by experiment. In consistency, the amplitude of voltage changes and voltage difference (voltage coefficient variation σV) under different thermal loading conditions is examined. In transient characteristics, discussing the trends of transient voltage at different thermal loading. As the result, once the stack temperature increases from 65 °C to 70 °C, the stack performance and dynamic response are significantly improved, which may be caused by the rise in temperature promoting the establishment of the internal quality transmission channel.
Technical Paper

Uniformity Identification and Sensitivity Analysis of Water Content of Each PEM Fuel Cell Based on New Online High Frequency Resistance Measurement Technique

2024-04-09
2024-01-2189
Water content estimation is a key problem for studying the PEM fuel cell. When several hundred fuel cells are connected in serial and their active surface area is enlarged for sufficient power, the difference between cells becomes significant with respect to voltage and water content. The voltage of each cell is measurable by the cell voltage monitor (CVM) while it is difficult to estimate water content of the individual. Resistance of the polymer electrolyte membrane is monotonically related to its water content, so that the new online high frequency resistance (HFR) measurement technique is investigated to identify the uniformity of water content between cells and analyze its sensitivity to operating conditions in this paper. Firstly, the accuracy of the proposed technique is experimentally validated to be comparable to that of a commercialized electrochemical impedance spectroscopy (EIS) measurement equipment.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Vehicle Detection Based on Deep Neural Network Combined with Radar Attention Mechanism

2020-12-29
2020-01-5171
In the autonomous driving perception task, the accuracy of target detection is an essential evaluation, especially for small targets. In this work, we propose a multi-sensor fusion neural network that combines radar and image data to improve the confidence level of the camera when detecting targets and the accuracy of the prediction box regression. The fusion network is based on the basic structure of single-shot multi-box detection (SSD). Inspired by the attention mechanism in image processing, our work incorporates the a priori knowledge of radar detection in the convolutional block attention module (CBAM), which forms a new attention mechanism module called radar convolutional block attention module (RCBAM). We add the RCBAM into the SSD target detection network to build a deep neural network fusing millimeter-wave radar and camera.
Technical Paper

Vehicle Distance Measurement Algorithm Based on Monocular Vision and License Plate Width

2019-04-02
2019-01-0882
In order to avoid the influence of the change of the camera pitch angle and the variation of the height of the ground on the ranging accuracy, improve the real-time performance of the algorithm by substituting the current widely-used monocular vision ranging algorithm which builds the optical model based on the shadow of the vehicle floor and the lane line, as well as avoid the classification of vehicle detection, a vehicle distance measurement algorithm based on monocular vision and license plate width is established. Firstly, the target image acquisition and preprocessing are studied. Then the paper studies the license plate image location segmentation method based on accelerated template matching. On this basis, the algorithm for obtaining the ratio of license plate width to image width is studied, and the function of vehicle distance and license plate ratio width is established.
Technical Paper

Vehicle Kinematics-Based Image Augmentation against Motion Blur for Object Detectors

2023-04-11
2023-01-0050
High-speed vehicles in low illumination environments severely blur the images used in object detectors, which poses a potential threat to object detector-based advanced driver assistance systems (ADAS) and autonomous driving systems. Augmenting the training images for object detectors is an efficient way to mitigate the threat from motion blur. However, little attention has been paid to the motion of the vehicle and the position of objects in the traffic scene, which limits the consistence between the resulting augmented images and traffic scenes. In this paper, we present a vehicle kinematics-based image augmentation algorithm by modeling and analyzing the traffic scenes to generate more realistic augmented images and achieve higher robustness improvement on object detectors against motion blur. Firstly, we propose a traffic scene model considering vehicle motion and the relationship between the vehicle and the object in the traffic scene.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Journal Article

Vehicle Trajectory Prediction Based on Motion Model and Maneuver Model Fusion with Interactive Multiple Models

2020-04-14
2020-01-0112
Safety is the cornerstone for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (ADS). To assess the safety of a traffic situation, it is essential to predict motion states of traffic participants in the future with mathematic models. Accurate vehicle trajectory prediction is an important prerequisite for reasonable traffic situation risk assessment and appropriate decision making. Vehicle trajectory prediction methods can be generally divided into motion model based methods and maneuver model based methods. Vehicle trajectory prediction based on motion models can be accurate and reliable only in the short term. While vehicle trajectory prediction based on maneuver models present more satisfactory performance in the long term, these maneuver models rely on machine learning methods. Abundant data should be collected to train the maneuver recognition model, which increases complexity and lowers real-time performance.
Technical Paper

Vehicle Validation for Pressure Estimation Algorithms of Decoupled EHB Based on Actuator Characteristics and Vehicle Dynamics

2020-04-14
2020-01-0210
Recently, electro-hydraulic brake systems (EHB) has been developed to take place of the vacuum booster, having the advantage of faster pressure build-up and continuous pressure regulation. In contrast to the vacuum booster, the pressure estimation for EHB is worth to be studied due to its abundant resource (i.e. electric motor) and cost-effective benefit. This work improves an interconnected pressure estimation algorithm (IPEA) based on actuator characteristics by introducing the vehicle dynamics and validates it via vehicle tests. Considering the previous IPEA as the prior pressure estimation, the wheel speed feedback is used for modification via a proportional-integral (PI) observer. Superior to the IPEA based on actuator characteristics, the proposed PEA improves the accuracy by more than 20% under the mismatch of pressure-position relation.
Technical Paper

Vibration Analysis of Series-parallel Hybrid Powertrain System under Typical Working Condition and Modes

2018-04-03
2018-01-1291
Powertrain system of series-parallel hybrid vehicle contains multiple excitation sources like engine, motor and generator. The reduction of noise and vibration is quite difficult during multiplex working modes or the switch of modes. Aiming at Series-parallel hybrid powertrain system which contains engine, motor and planetary gear subsystems, this paper considered a typical working condition which is based on the power control strategy and established the torsional vibration mechanical model of hybrid powertrain system. The inherent characteristics and transient vibration response of the electric mode, hybrid mode and parking charging mode were studied and it was discovered that the repetitive frequency of the powertrain system under the three working modes is the same which is only related to inertia and meshing stiffness of planetary gear system. The non-repetitive frequency and corresponding vibration modes under the electric mode and parking charging mode are both close.
Technical Paper

Virtual Co-Simulation Platform for Test and Validation of ADAS and Autonomous Driving

2019-11-04
2019-01-5040
Vehicles equipped with one or several functions of Advanced Driver Assistant System (ADAS) and autonomous driving (AD) technology are more mature and prevalent nowadays. Vehicles being smarter and driving being easier is an unstoppable trend. In the near future, intelligent vehicles will be mass produced and running on the road. However, before the mass-production of intelligent vehicles, a lot of experimental tests and validations need to be carried out to insure the safety and reliability of ADAS and AD technology. Although the road test of real vehicles is the most reliable and accurate test method, it cannot meet the need of rapid development of technology research due to high time and financial cost. Therefore, a high-efficient design and evaluation methodology for ADAS and AD development and test is a must. In this paper, a virtual co-simulation platform based on MATLAB/Simulink, OpenModelica and Unity 3D game engine (MOMU) is proposed.
Technical Paper

Voltage and Voltage Consistency Attenuation Law of the Fuel Cell Stack Based on the Durability Cycle Condition

2019-04-02
2019-01-0386
Based on the durability cycle test of fuel cell stack and the characteristics of cyclic working conditions, this paper defines the characteristic current point and studies the attenuation rule of the fuel cell stack voltage over time under the characteristic current point. The results show that the voltage of the fuel cell stack appears to be linear downward under the characteristic current point. and the voltage attenuation rate of the fuel cell stack increases quadratically with the increase of the current density in addition to the open-circuit voltage point. Then the coefficient of variation is introduced in statistics as the index to characterize the voltage consistency attenuation of the fuel cell stack, and its variation rule is explored. The results show that the voltage consistency of vehicle fuel cell stack decreases seriously with the increase of running time under the condition of durable cycling.
Technical Paper

Vulnerability analysis of DoIP implementation based on model learning

2024-04-09
2024-01-2807
The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them.
X